Probabilistic design of a molybdenum-base alloy using a neural network
نویسندگان
چکیده
منابع مشابه
Probabilistic design of a molybdenum-base alloy using a neural network
An artificial intelligence tool is exploited to discover and characterize a new molybdenum-base alloy that is the most likely to simultaneously satisfy targets of cost, phase stability, precipitate content, yield stress, and hardness. Experimental testing demonstrates that the proposed alloy fulfills the computational predictions, and furthermore the physical properties exceed those of other co...
متن کاملDesign of a nickel-base superalloy using a neural network
A new computational tool has been developed to model, discover, and optimize new alloys that simultaneously satisfy up to eleven physical criteria. An artificial neural network is trained from pre-existing materials data that enables the prediction of individual material properties both as a function of composition and heat treatment routine, which allows it to optimize the material properties ...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scripta Materialia
سال: 2018
ISSN: 1359-6462
DOI: 10.1016/j.scriptamat.2017.11.008